Dieter's Nixie Tube Data Archive

This file is a part of Dieter's Nixie- and display tubes data archive

If you have more datasheets, articles, books, pictures or other information about Nixie tubes or other display devices please let me know.

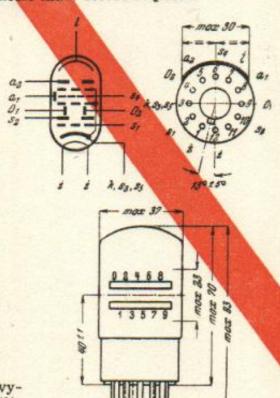
Thank you!

Document in this file	Original datasheet: PIE - ELW1
Display devices in	ELW1
this document	

File created by Dieter Waechter www.tube-tester.com

DEKADOWA LAMPA LICZĄCA

Lampa ELW1 jest dekadową lampą liczącą przeznaczoną do pracy w układach zliczających z szybkością 30000 imp/sek*).


Wykonanie: bańka - szklana,

cokół - duodekal,

katoda — tlenkowa pośrednio żarzona.

Pozycja pracy lampy: dowolna.

*) Przy zastosowaniu specjalnych układów szybkość liczenia może wynosić max. 100000 imp./sek.

Wszystkie wymiery w milimetrach

PRZEMYSŁOWY INSTYTUT ELEKTRONIKI

ZAKŁAD DOŚWIADCZALNY

WARSZAWA, DŁUGA 44/50

Przed zastosowaniem opisanego w tej karcie wyrobu należy sprawdzić w Zakładzie Doświadczalnym PIE jego dane techniczne i możliwości dostawy.

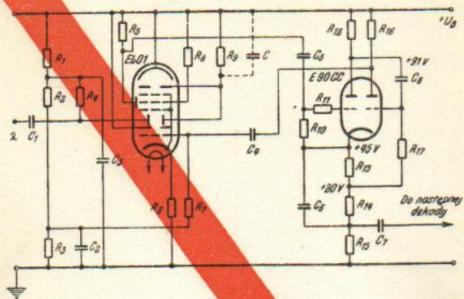
 $C_{ss} = 7.7 \text{ pF}$

DANE TECHNICZNE

DANE TYPOWE

Napięcie żarzenia $U_z=6,3~{
m V}$ Prąd żarzenia $I_z=0,3~{
m A}$ Pojemności elektrody badanej $C_{a2}=10,5~{
m pF}$ względem wszystkich pozostałych $C_{D1}=3,5~{
m pF}$ $C_{D2}=3,8~{
m pF}$ $C_{a1}=4,9~{
m pF}$ $C_{s1}=6,8~{
m pF}$

DANE TYPOWEGO UKŁADU PRACY


Napięcie zasilania $U_B=300~{
m V}$ Napięcie siatki pierwszej $U_{s1}=11,9\pm0,15~{
m V}$ Napięcie siatki drugiej $U_{s2}=300~{
m V}$ Napięcie płytki odchylającej czynnej $U_{Dl}=156\pm1,5~{
m V}$ Napięcie ekranu luminującego $U_{l}=300~{
m V}$ Prąd katody $I_{k}=0,95~{
m mA}$ Prąd siatki drugiej $I_{s2}=0,1~{
m mA}$

PRZEMYSŁOWY INSTYTUT ELEKTRONIKI

ZAKŁAD DOŚWIADCZALNY

TYPOWY UKŁAD PRACY

		ALCOHOLD .	
$R_1 = 68$	$k\Omega \pm 1\%$	$R_{\rm e}=15$	$k\Omega \pm 1\%$
$R_2 = 68$	$k\Omega \pm 1\%$	$R_7 = 0.33$	$M\Omega \pm 10\%$
$R_3 = 5.6$	$k\Omega \pm 1\%$	$R_s = 47$	$k\Omega \pm 5\%$
$R_4 = 15$	$k\Omega \pm 2\%$	$R_9 = 1$	$M\Omega \pm 1\%$
$R_5 = 39$	$k\Omega \pm 10\%$		

Uwagi:

Częstotliwość graniczna podanego układu liczącego wynosi ≤ 30000 imp/sek. Podane wartości napięć odniesiono do ziemi. Przy zastosowaniu oporów R_1 ; R_2 ; R_3 o dokładności $1^0/0$ napięcie zasilania U_B może być niestabilizowane, a dopuszczalne wahania mogą wynosić $\pm 10^0/0$.

Pojemność szkodliwa C winna być przez krótki montaż sprowadzona do wartości minimalnej.

PRZEMYSŁOWY INSTYTUT ELEKTRONIKI

ZAKŁAD DOŚWIADCZALNY

WARSZAWA, DŁUGA 44/50

$R_{10} = 0.56$	$M\Omega \pm 10\%$	$C_1 =$	
$R_{11} = 5.6$	$k\Omega\pm10\%$	$C_2 = 0.39$	$\mu F \pm 20\%$
$R_{12} = 39$	$k\Omega \pm 2\%$	$C_3 = 0.15$	$\mu F \pm 20\%$
$R_{13} = 4.7$	$k\Omega \pm 2\%$	$C_4 = 6800$	$pF \pm 10\%$
$R_{14} = 2,7$	$k\Omega \pm 2\%$	$C_5 = 220$	$pF \pm 10\%$
$R_{15} = 1$	kΩ ± 1%	$C_6 = 68$	pF \pm 2%
$R_{16} = 3.3$	$k\Omega \pm 2\%$	$C_7 = 680$	$pF \pm 5\%$
$R_{17} = 0.15$	$M\Omega \pm 2\%$	$C_8 = 68$	pF \pm 2%

Uwaga:

 $C_1=6800~{
m pF}\pm 10^{0/6}~{
m gdy}$ układ formujący z lampą E90CC znajduje się na wejściu, $C_1=680~{
m pF}\pm 5^{0/6}~{
m gdy}$ układ formujący z lampą E90CC znajduje się między dekadami.

DANE DOPUSZCZALNE

Napiecie zasilania

 $U_B = \max. 400 \text{ V}$

DANE ZAKŁÓCAJĄCYCH POL MAGNETYCZ-NYCH

Dopuszczalne natężenie zakłócających pól magnetycznych w jakimkolwiek kierunku wynosi max. 2 gausy.

DANE OŚWIETLENIA

W celu uzyskania dobrego odczytu oświetlenie ekranów luminujących lampy ELW1 powinno wynosić 40÷400 luxów.

PRZEMYSŁOWY INSTYTUT ELEKTRONIKI

ZAKŁAD DOŚWIADCZALNY

WARSZAWA, DŁUGA 44/50

KSZTAŁT IMPULSÓW WEJŚCIOWYCH

Amplituda dodatniego impulsu wchodzącego na płytkę D_1 powinna wynosić 13,6 V \pm 15%, a kształt winien odpowiadać podanemu na rysunku.

 $tg a > 20 \times 10^6$ V/sek

 $tg \beta < 1,2 \times 10^6$ V/sek

PRZEMYSŁOWY INSTYTUT ELEKTRONIKI

ZAKŁAD DOŚWIADCZALNY

WARSZAWA, DŁUGA 44/50