Dieter's Nixie Tube Data Archive

This file is a part of Dieter's Nixie- and display tubes data archive

If you have more datasheets, articles, books, pictures or other information about Nixie tubes or other display devices please let me know.

Thank you!

Document in this file	Rodan Catalog D4806-AB-2
	CD101, CD11, CD12, CD13, CD13A, CD14, CD24, CD25, CD27,
this document	CD28, CD43, CD47, CD66, CD66P, CD78, CD82, CD91, CD92, CD94,
	CD95, GR-110, GR-111A, GR-111PA, GR-113, GR-115, GR-116, GR-
	118, GR-211, GR-311, GR-411, TSB-12P, TSB-13P, TSB-14P, TSM-
	11P, TSM-13P, TSR-11P

File created by Dieter Waechter www.tube-tester.com

INDICATOR TUBE

表示管

 $+-\times\div$ 1234567890 KC KV K Ω 1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH + $-\times \div$ 1234567890 KC KV KΩ 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH + $-\times$ ÷ 1234567890 $+-\times \div 1234567890$ KC KV KΩ1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH $+-\times\div$ 1234567890 KC KV K Ω 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH $+-\times\div$ 1234567890 $+-\times\div$ 1234567890 KC KV KΩ1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH $+-\times\div$ 1234567890 KC KV KΩ 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH + $-\times$ ÷ 1234567890 $+ - \times \div 1234567890$ KCKV KΩ1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH $+-\times\div$ 1234567890 KC KV KΩ 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH + $-\times \div$ 1234567890 $+-\times\div$ 1234567890 KC KV K Ω 1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH $+-\times\div$ 1234567890 KC KV KΩ 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH + $-\times$ ÷ 1234567890 $+-\times\div$ 1234567890 KC KV K Ω 1234567890 % $^{\circ}$ C PH 567890 % $^{\circ}$ C PH + $-\times\div$ 1234567890 KC KV K Ω 1234 KC KV K Ω 1234567890 % $^{\circ}$ C PH + $-\times$ ÷ 1234567890

デジタル数字・記号表示に最適

CD 13 CD 13a

超 小 形 管 小形測定器用 小形計算機用

CD 24

CD 11

スタンダード品 一般 測定器 用 制御装置の表示

CD 78/GR-115 CD 92/GR-116 CD 82/GR-113

側部表示形 卓上電子計算機用

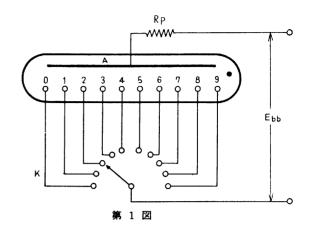
CD 28 小 形 管 小形測定器用 小形計算機用

長 寿 命 / 高 信 頼 度 /

CD 43 CD 25 **角形表示管** 測 定器用

記録表示, 管理盤表示, 時刻表示

CD 27 頭部表示形でもっとも大形 時刻表示、管理盤表示


CD 47/GR-411, CD 94/GR-211, CD 95/GR-311 横のスペースを取らない側部表示形

呼出表示,記録表示

表示管は、稀有ガスの放電現象を利用し管内に所要の表示を形取った電極を挿入したもので、グロー放電により表示が鮮かに、美しく浮出されます。下表に示す様に管内には球種に応じた数字や各種の記号やアルファベット等が封入されており、170V又は200V以上を供給するに適した各種の電源によって制御する事が出来ます。

機械的表示,他のエレクトロニクス表示に比べ,多くの点で最も適した表示素子であり, デジタル表示としては,絶好のものであります。

基本回路

表示管の特長

表示管は放電管の持つ性質を充分に生かした画期的製品で次の様な特長を持っています。

- 1. 輝度が高く、明確な表示が得られる。
- 2. 表示、消去が極めて早く行なわれる。
- 3. 消費電力が少ない。
- 4. スペースを取らない。
- 5. 表示が美しい。
- 6. 特殊ガスが封入してあり寿命が非常に永い。

当社製品の特長

- 1. 材質、設計、製法等に特に注意し、長寿命と安定を計っている。
- 2. バルブにシールド金具を付け補強している。 (CD 11 等)
- 3. バルブ前面は平らで表示が見易い。
- 4. 振動、ショックに対し設計上考慮されている。
- 5. 電極スパッタ防止の為特殊シールドが挿入されている。
- 6. シールドの金属が黒色に加工されているので底部の反射が少なく表示が鮮明に見える。
- 7. 各種記号が取揃えてある。

表示管の応用

- ○各種制御装置の表示
- ○レベル表示
- ○カウンター表示
- ○工程管理等の記録表示
- ○チャンネル切換表示
- ○時刻表示
- ○記録表示板
- ○呼出し表示
- ○デジタルボルトメーター表示○卓上計算機の表示
- ○信号表示

表示管の切換方式

- ○ロータリスイッチとの結合
- ○電磁リレー回路との結合
- ○ビームスイッチングチューブとの結合
- ○リレー放電管との結合
- ○トランジスターとの結合
- ○デカトロンとの結合
- ○ⅠCとの結合

表示管の特性及び回路条件

表示管の寿命

一般に表示管の寿命は、陰極金属のスパッタによる、字形の断線が寿命時間の判定になっていますが、実際使用上の寿命に関しては、短時間切換の場合でも使用時間間隔が各陰極によって異り、又放電電流や電源整流条件、使用陰極個々のバラツキ等にもかなりの差異を生じますので、一般にその使用条件により相当した寿命が決定されます。特に長寿命表示管は、陰極金属のスパッタ現象をいちじるしく抑える事に成功したもので、連続表示及び短時間切換表示等の苛酷な使用に対しても1陰極当りCD11の場合最小25,000時間は期待出来、更に各陰極を、数時間間隔以内で切換て表示するならば、総合推定寿命は200,000時間以上期待出来ます。又CD12,CD27等の場合はこれ以上の推定寿命が得られます。(表1参照)

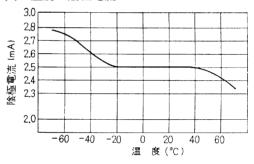
品 名	推定寿命
CD 11	約 200,000 時間
CD 12	" 500,000 "
CD 13	" 100,000 "
CD 27	" 500,000 "
CD 28	" 150,000 "
CD 24	" 200,000 "

表1 各品種の寿命時間 (標準電流)

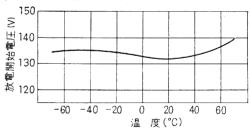
表示管の回路条件

放電開始電圧

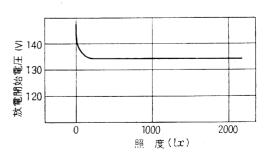
この電圧を供給しなければ、放電を開始することは出来ないので陽極供給電圧は、この電圧以上である必要があります。又これは外部条件、例えば周囲の明るさ、温度等により変動するのでこれらを考慮して陽極供給電圧を決定しなければなりません。メーカーによって最低陽極供給電圧が提示されていますが、回路設計上許されるならばなるべく高めに選ばれた方がよいと思います。但し300V以上は異状放電を誘発する恐れがありますので170~300Vの範囲にEbb を選ぶのが最適です。


陰 極 電 流

陸極電流が少なければ、字形を満足することができず、 又流し過ぎれば寿命が短縮し、更に、字形以外の引出 線や支柱まで放電したりするようになります。 又字形 によって面積に差がある為、字形を満足させるに必要 な最少電流に差が生じます。個々の管による特性のバ ラツキや、1個の管でも字形により多少の差がある為 メーカーはこれらの特性のバラツキ、変動を考慮して 標準電流を提示すると共に推奨例として陽極供給電圧 に対する陽極直列抵抗の値を発表しているので回路設 計の際はこのデーターを(その他の特性の項も参照) 御使用下さい。この電圧と抵抗の関係は直線と見做し て実用上差支えないので、発表の値以外の電圧で使用 される場合は、比例計算で抵抗値を出して下さい。


温度特性, 光電効果

-65~+70° Cの範囲における温度の影響の一例を第2回に示してありますが、周囲温度が -10° C以下になりますと、長寿命の効果に減少が起り始めます。又光電効果は第3回に示す様なデーターになっています。絶対暗黒中又はそれに近い様な条件で使用しますと放電開始に時間遅れが現われます。


(a) 温度と陰極電流

(b) 温度と放電開始電圧

第2図 CD 11 の温度特性

第3図 CD 11 照度と放電開始電圧

其の他の特性

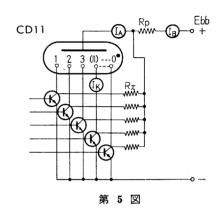
基本回路の如く,点火極以外の陰極を全部切雑してある場合は問題ないのですが、トランジスタ等の電子的素子で切換を行なう場合、点火極以外の電極に正のバイアス電圧を加えますが、この正のバイアス特性は第4図のようになり、(B)の範囲にあるよう選定して下さい。 Epb >約 60 Vdc, Ebb-Epb < Ez(約120 Vdc)。又抵抗変化により切換を行なうことと、トランジスタ回路の特性改善の目的でRxを通して陽極に接続するため、第5図点火極に定格電流を流すとき、これらRxにも電流が流れRpの電圧降下が増加するので、Rpの値は基本回路に於ける値よりも若干小さくする必要があります。表2にIkを標準値一定、Rxを1.5 MΩとした場合に於ける各Ebbに対するRpの値を示します。陰極定格電流は第5図Ikの箇所で測定して下さい。表2トランジスタ制御の場合のEbbとRpの例

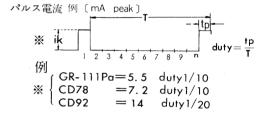
NET 7 7 7 N 7 III IIII N 7 - N C I T T N I I										
品 種	CD	11	CD	24	CD 28					
IB 及 RP Ebb 単位 Vdc 条件	IB m A Rx=1.5MΩ	RP K Ω Ik=2.5mA	IB m A Rx=1.5MΩ	RP K Ω Ik=2.25mA	IB m A Rx=1.5MΩ	RP K Ω Ik=1.8mA				
170	3. 5	7	3. 2	7	2. 8	10				
200	3. 5	16	3. 2	16	2. 8	20				
250	3. 5	30	3. 2	30	2. 8	40				
300	3. 5	45	3. 2	45	2. 8	60				

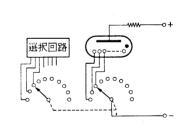
2. 回路は第5図による。

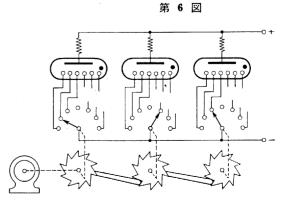
縦 形 表 示 管

従来の表示管はバルブの頭部で表示される様に作られたものでありますが、縦形表示管は表示電極をバルブに対し縦形(側面)に配置しバルブ容積に対し、数字の大きさを有効に生かしたものであります。従って数字間隔あるいは、全体の横幅のスペースを最小限におさえる事が出来ます。又接続端子はリード線形であるため、プリント配線が容易であります。桁数の多い電子式卓上計算機、小形計測機器の表示に非常に適した表示素子であります。


表示管の使用例


表示管の用途は広汎でありますが参考として基礎的な 使用例を次に示します。


A 機械的な方法


- (1) 切換スイッチ制御:単なる表示回路として第1 図の基本回路がそのまま用いられる。切換スイッチを他の回路の切換スイッチと連動させればチャンネル表示装置に使用できる。(第6図)
- (2) モーター制御:切換スイッチをモーターで回転させれば、電気時計、回転計、分配器表示等に用いられ、特に回転軸にカムを用いて多段にすれば任意に多桁の表示が得られる。(第7図)
- (3) リレーによる選択回路:第8図の如く樹枝状に リレーを配置し、連動の4組のリレーを適当に組 合わせてon、off状態を与えれば任意の数を選択し て表示することができる。これはリレーによる2 進化10進法変換回路で、不連続平衡型でディジタ ル電圧計等に用いられる方式である。

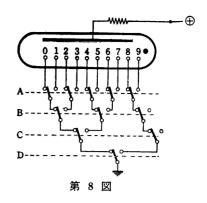
第 7 図

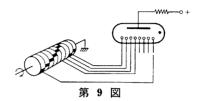
- (4) リレー制御: 電話用ロータリーリレーの各接点に各陸極を接続すれば電気的入力パルスで接点が順次移るので、計数表示、時間表示、回路表示等に用いられダイヤル制御も可能である。
- (5) 回転体制御:ドラム又は円板を使用し,導体と 不導体部分を配置して予め記録された符号の走査 により予定の順序に数字を点滅する方法。(第9図)
- (6) 直線状符号板:直線状に符号板を作り刷子でスライドしてゆく方法でエレベーターの表示に使用出来る。また符号板の代りに穿孔テープを用いることも出来る。

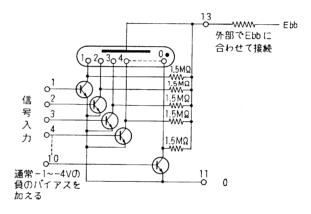
B. 半導体による方法

高速度および高い信頼性を必要とする場合は半導体 による駆動方法が使用されます。

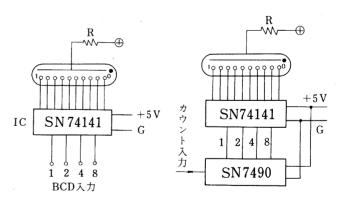
(1) トランジスタによる制御:第10図

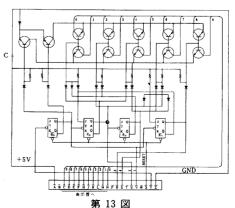

に示すように放電管の各陰極回路にPNPトランジスタを接続して、常時はベース電圧を零またはいくらか負にしておき、点灯すべき数字陰極に接続されたトランジスタ1ヶのみを選択しベース電圧を正にドライブし数字を点灯させる。


トランジスタのコレクターエミッタ間のブレーク ダウン電圧が80V以上のトランジスタを使用する ことが望ましい。

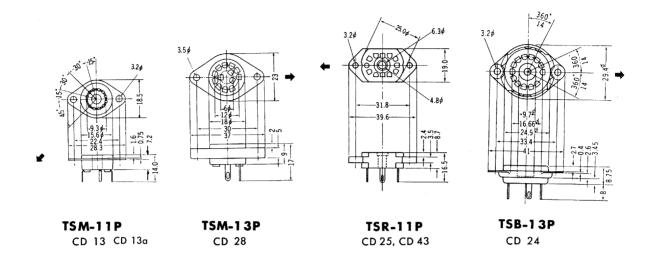

- (2) I Cによる制御:第11図は最近よく利用されているデコータ・ドライバと云われる I Cによる制御方法でテキサスインスツルメント社の S N 7414 1 または他社の同等品を図のように接続して B C D 入力に1.2.4.8 信号を与えて希望する数字陰極を点灯するもので I C が流せる電流は約 7 m A です。
- (3) 計数機能をもたせる場合:第12図はICによる制御方法で(1)に説明したデコーダ・ドライバ駆動回路のBCD入力端子に10進カウンタIC(例えばテキサスインスツルメント社のSN7490又は他社同等品)を接続して10進カウンタを構成したもので部品数が少なく、又ICを使用したため信頼性が高いため縦形表示管駆動用として最もよく利用されている。

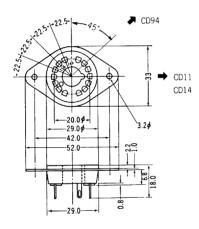
第13 図 はトランジスタとICを使用した制御方法でICのデコーダ・ドライバを使用できない大形の表示管,例えば当社の CD 27 、CD47 等を点灯する場合によく用いられるカウンタ基板 PUー1003の回路図である。

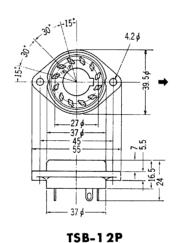

この基板はまたソケット形の表示管を駆使する場合に標準品としてよく利用される。



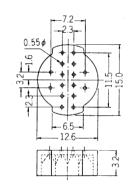
第 10 図


第 11 図

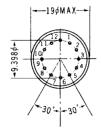

第 12 図


ソケット寸法図

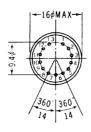
※ 下記のソケットでCD13, CD13a, CD94にかぎりソケットの 取付位置は矢印を左45°Cに向けた状態にする。 細字は各表示管の形名 矢印は数字の正面又は下側の方向を示す。



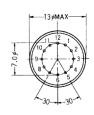
TSB-14P CD11, CD14, CD94/GR-211


CD12.CD27.CD47/GR-414 CD95/GR-311

スタンドオフ裏面図



CD 92/GR-116


ベース図面 (底面図)

CD 66 CD 66p

GR-111a GR-111pa

CD 78/GR-115 CD 82/GR-113

	ト ッ プ ビ ュ ー タ イ プ (直 流 動 作)										IJ	1	
品名項目	CD11	CD12	CD13 (CD-101) CD13a	CD14	CD24 (CD-102)	CD25	CD27	CD28	CD43	GR-118	CD91 (GR-110)	CD78 (GR-115)	CD82 (GR-113)
外 形 図	+ 30 mAX - 30 mAX - 32 mAX - 48 SWAX - 特殊14ピン	55¢ MAX — B12 · 431:	16.5MAX + 8 + 1.5 30MAX + 8 + 1.5 30MAX	+ 30¢MAX → 61 → 8 + 82 → 10 →	+ -4 MAX + -8 & 1.5 & + -3 & 4.1 & + -4 & 4.	29±2 — 30MAX — 30MAX	72 \$ MAX	7 MAX. -22¢ MAX + E † 62 - + + + + + + + + + + + + + + + + + +	32 MX	85 MN 210±2	10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX 10.5MAX	13¢ MAX 13¢ MAX 26-661-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	13¢ MAX MAX MAX MAX MAX MAX MAX MAX
接続図 ③: 矢印は数字の正面の方向又は下側を示す A:アノード K:カソード IC:内部接続(接続せぬ事) NP:リード省略, リード切断 NC:接続なし	K(9) IC K(0) K(8) (0) (1) (1) (1) K(7) (1) (1) (1) K(5) (1) (1) (1) K(4) (1) (1) K(5) (1) (1) K(4) (1) (1)	K(5) K(6) K(7) K(8) K(8) K(4) K(9) K(9) K(2) K(1) A NC	K(5) K(6) K(7) K(4)	C C C C C C C C C C	K(2) K(6) (C K(8) (T) (C K(9) (T) (C K(9) (T) (C K(10) (T) (C K(11) (C K(12) (C) (C) (C)	K (7)(5) (6) (7) K (5) K (8)(3) (6) (8) (4) K (9)(3) (7) (8) (8) (4) K (9)(2) (9) (8) (1) K (1)	K(5) K(6) K(7) K(4)	K(5) K(6) K(4) (5) (6) K(7) K(3) (6) (7) (8) K(12) (7) (8) K(9) K(1) (8)	K (7)(3) (6) (7) K (5) K (8)(4) (8) (4) K (9)(3) (9) (8) K (3) K (0)(2) (9) K (2) A (1)	K (5) & K (6) K (4) (4) (7) (8) K (8) K (3) (2) (9) (9) K (2) (2) (9) K (1)	K (6) NP K (7) K (8) K (K(9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	K(1) K(2) K(3) A
使用ソケット	TSB — 1.4P	TSB — 12P	TSM — 11P	TSB — 14P	TSB — 13P	TSR — 11P	TSB — 12P	TSM — 13P	TSR — 11P				
ベース	特殊1 4 ピン 保護ベース付	特殊デュオデカル12ピン	特殊11ピン	特殊14ピン	N175-1	L17\$R-2	特殊デュオデカル12ピン	特殊13ピン	L17\$R — 1	特殊 11 リード	特殊13リード	M7S-1	M7S — 1
構造	0~9 頭部表示 広視角形	0~9 頭部表示 広視角形	0~9 頭部表示 広視角形	+,- ×,÷ 頸部表示形	0~9 頭部表示 広視角形	角形バルブ 0~9頭部表示 広視角形	0~9 頭部表示 広視角形	0~9 頭部表示 広視角形	角形バルブ 0~9 頭部表示 広視角形		0~9 小数点 側部表示	0~9 側部表示 小数点 広視角形	0~9 側部表示 小数点 広視角形
5bb (Vdc) 気 放 電 開 始 電 圧 Ez (Vdc) 的 陰極電流 数字陰極	最小 標準 最大 170 — — 170 1.5 2.5 3.5 (Ebb-170Vdc, Rp= 10 kΩ) — — 0.5	最小 標準 最大 200 — — — — 170 3.5 5.0 6.5 (Ebb=200Vdc, Pp=12kΩ) — — 1	最小 標準 最大 170 — — — 170 0.6 0.9 1.2 (Ebb-170Vdc, Pp-33kΩ) — — 0.2	最小 標準 最大 170 — — 170 1.5 2.5 3.5 (Ebb-170Vdc. Rp=10kΩ) — — 0.5	最小 標準 最大 170 — — 170 1.5 2.25 3.0 (Ebb=170Vdc, Rp=10kΩ) — — 0.5	最小 標準 最大 170 — — — 170 1.5 2.5 3.5 (Ebb=170Vdc.Rp=10kΩ) — — 0.5	最小 標準 最大 200 — - 170 7.5 10 12.5 (Ebb=200Vdc, Rp=5kΩ) 2	最小 標準 最大 170 — — 170 1.0 1.8 2.5 (Ebb=170Vdc. Rp=15kΩ) — — 0.4	最小 標準 最大 170 — — — 170 1.5 2.25 3.0	最小 標準 最大 170 — — — 170 1,2 1.5 1.8 (Ebb-170Vdc, Rp-20kΩ) — — —	最小 標準 最大 170 — — 170 1.2 1.9 2.6 (Ebb-190Vdc, Rk-27kΩ) 0.15 0.3 0.5 (Ebb-190Vdc Rk(-)=180kΩ) — — 0.5 — — 0.1	最小 標準 最大 170 — — 170 2.3 2.75 3.3 (Ebb=180Vdc. Rk-15kΩ) 0.2 0.3 0.4 Ebb=180Vdc Rk(·)=150kΩ) — — 0.5 — — 0.1	最小、標準 最大 170 — — 170 2.3 2.75 3.3 (Ebb=180Vdc, Rk=15kΩ) 0.2 0.3 0.4 (Ebb=180Vdc RK(·)=150kΩ) — — 0.5 — — 0.1
最 せん頭陰極電流 数字陰極 ik (mA) 小数点 / 小数点 / (k(·) (mAb) 平均陰極電流範囲 数字陰極 (mAdc) 小数点 / (mAdc) 小数点 / (mAdc) イス 温度 範囲 Ts (°C) 動作時周囲温度範囲 Ta (°C) 機	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	−10 ~ +55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-65 ~ +70 -10 ~ +55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcl} 3.6 \\ 0.6 \\ 2.3 & \sim & 3.3 \\ 0.2 & \sim & 0.4 \\ -65 & \sim & +70 \\ -10 & \sim & +55 \end{array} $
機デ 最 大 視 角 (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg) (Re	約 160 約 25 170 200 250 300 10 22 42 62	終り 75 200 250 300 12 22 32	終り 4 170 200 250 300 33 65 120 180	約 100 約 25 170 200 250 300 10 22 42 62	終り160 余り 12 170 200 250 300 10 24 47 68	彩 160 彩 13 170 200 250 300 10 22 43 62	発生 160 余年 130 200 250 300 5 10 15	約 160 約 9 170 200 250 300 15 35 65 100	#9 1 6 0 #9 1 0 170 200 250 300 10 24 47 68	#5 1 6 0 #5 5 170 200 250 20 40 75	Rk27 33 47	#勺 90 #勺 3.5 180 200 Rk 15 20 150 200	乗り90 乗り3.5 180 200 Rk 15 20 150 200

ドビ	ニュータイプ(直流動作)						サイドビュータイプ(パルス動作)						
CD92 (GR-116)	GR-111a	CD66	CD47 (GR-414)	CD94 (GR-211)	CD95 (GR-311)	CD91 (GR-110)	CD78 (GR-115)	CD82 (GR-113)	CD92 (GR-116)	GR-111pa	CD66p	品名項目	
13.5¢ MAX E1-127¢ NW0S 1.27¢ NW0S 0.4¢	16MAX - 275 1E - 2.0 φ	19¢MAX - 22.5 - 16 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18	772¢MAX - 72¢MAX - 72¢MAX - 72¢MAX - 76¢MAX - 812 · 431: 61:	30¢MAX - 32¢MAX - 32	-51¢ MAX - 55¢ MAX - 55¢ MAX - 812-43c	10.5 \$ MAX 91 # £27 11.5 \$ NWEE	13¢MAX -5 1 +63 1.5¢ M75-1 1 0.4¢	13¢ MAX 13¢ MAX 13¢ MAX 156 157 159 159 159	13.5¢ MAX	15\$ MAX 15\$ MAX 275 181 219 210 41 MAX	22.55 — 16 — 22.55 — 16 — 27.50 — 38.11.2.3 — 47.50 MAX	外 形 図	
A M61 M51 M51 M51 M51 M51 M51 M51 M51 M51 M5	K(9) K(2) K(8) K(3) (1) K(4) K(1) K(1) K(1) K(1) K(2) K(3) K(4) K(5) K(6)	K(5) K(6) K(7) K(4)	K(5) K(6) K(7) K(8) K(4) K(4) K(2) K(2) K(2) K(2) K(2) K(2) K(2) K(3) K(2) K(3) K(4) K(4) K(5) K(5) K(6) K(6) K(6) K(7) K(6) K(7) K(8) K(8) K(8) K(8) K(8) K(8) K(8) K(8	K(8) K(9) K(0) K(8) (1) (1) (1) (1) (1) K(1) (1) (1) (1) (1) K(2) (1) (1) (1) K(3) (1) (1) (1) K(4) (1) (1) (1) K(5) (1) (1) (1) K(4) (1) (1) (1) K(5) (1) (1) (1) K(7) (1) (1) (1) K(8) (1) (1) (1) K(1) (1) (1) (1) K(2)	K (6) K (7) K (8) K (4) (4) (4) (4) (5) (5) (6) (7) (8) K (3) (3) (4) (5) (7) (8) K (3) (3) (4) (5) (7) (8) K (1) ■ A	K 66 K 77 J 66 K K 78	K (2) (6) (4) K (0) (7) (8) (5) K (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	K(1) (5) (7) (3) K(2) (6) (7) (4) K(0) (3) (6) (6) K(9) (7) (8) (7)	A K(7) K(6) K(5) K(5) K(5) K(7) K(1) K(1) K(6) K(6) K(6) K(6) K(6) K(6) K(6) K(6	K(0) A K(1) K(9) K(2) K(8) K(3) K(1) K(4) K(1) K(5) K(7) K(6)	K(5) K(6) K(7) K(4)	接続図 ② : 矢印は数字の正面の方向又は下側を示す A:アノード K:カソード IC:内部接続(接続せぬ事) NP:リード省略,リード省略,リードなし NC:接続なし 使用ソケット	
特殊15リード	特殊13リード	特殊12リード (M9S-1)	特殊デュオデカル12ピン	特殊14ピン	特殊デュオデカル12ピン	特殊13リード	M7S-1	M7S — 1	特殊15リード	特殊13リード	特殊 12 リード (M9S-1)	ベース	
(左•石)	3~9 側部表示 小数点 広視角形	小数点 広視角形	0~9 側部表示 広視角形	0~9 側部表示形		0~9	0~9 側部表示 小数点 広視角形	小数点 広視角形	「欠数点」 (左·右) 十	0~9 側部表示 小数点 広視角形	0~9 側部表示 小数点 広視角形	構造	
最小 標準 最大 175 — 170 2.2 3 3.8 (Ebb=180Vdc, Rk=15kΩ) 0.2 0.4 0.6 (Ebb=180Vdc RKI·)=100kΩ) — 0.5 — 0.1	最小 標準 最大 1.70 — — — 170 1.5 2.25 3.0 (Ebb-190Vdc, Rp-20kΩ) — 0.4 — — 0.5 — 0.1	最小 標準 最大 170 — — 1.5 2.25 3.0 (Ebb=170Vdc,Rp-12kΩ) 0.3 0.5 0.7 (Ebb=170Vdc RK(-)=50kΩ) — — 0.5 — — 0.1	最小 標準 最大 250 — — — — 200 17.5 25 32.5 (Ebb-250Vdc, Rp=5.1kΩ) — — 5	最小 最準 最大 200 — — — 170 3.5 5 6.5 (Ebb=200Vdc, Rp=12kΩ) — — 1	展小 最準 最大 200 — — — — 170 12 15 18 (Ebb-215Vdc, Rp-5kΩ) — — 2.5	最小 標準 最大 190 — — — 170 ※9.5 (duty ¹ / ₁₀ Ebb—190Vdc) ※9.0.9 — 0.3 — 0.1	最小 標準 最大 170 — — — 170 — \$\text{ \text{ 7.2}} \text{ (duty } \frac{1}{10000000000000000000000000000000000	最小 標準 最大 170 — — 170 */910 (duty // _{10 Rp- 5kΩ}) */91.0 - — 0.4 - — 0.1	展小 標準 最大 175 — — 170 */314 (duty 1/20	最小 標準 最大 190 — — 170 約5.5 (duty 1/0 Ebb = 190Vdc) 約0.9 — 0.45 — 0.1	最小 標準 最大 190 — — 190	陽 極 供 給 直 流 電 圧 Ebb (Vdc) 放 電 開 始 電 圧 Ez (Vdc) 陰極電流 数字陰極 lk (mAdc) 小数点 / 小数点 / 下 lk(·) (mAdc) 各陰極平均消費電力 数字陰極 Pk (w) 小数点 / Pk(·) (w)	
4 1.3 2.2 ~ 3.8 0.2 ~ 0.6 -65 ~ +70 -10 ~ +55 約100 約4(スタンドオフ付)	3.5 1.0 1.5 ~ 3.0 0.2 ~ 0.6 -65 ~ +70 -10 ~ +55	3.5 1.0 1.5 ~ 3.0 0.3 ~ 0.7 -65 ~ +70 -10 ~ +55 ※约100 ※约10	35 17.5 ~ 32.5 -65 ~ +70 -10 ~ +55 #5120 #5230	10 3.5 ~ 6.5 -65 ~ +70 -10 ~ +55 約120 約35	18 10.0 ~ 18.0 -65 ~ +70 -10 ~ +55 ※约120 ※约125	2.4 ~ 8 0.4 ~ 2 0.25 ~ 0.8 0.04 ~ 0.2 -65 ~ +70 -10 ~ +55 約90 約 2.3	5 ~ 11 0.5 ~ 1.2 0.3 ~ 1.1 0.03 ~ 0.1 -65 ~ +70 -10 ~ +55	6 ~ 15 0.6 ~ 1.5 0.3 ~ 1.0 0.04 ~ 0.1 -65 ~ +70 -10 ~ +55 ※约 90 ※约 3.5	11 ~ 17 1 ~ 6 0.5 ~ 1.9 0.05 ~ 0.6 -65 ~ +70 -10 ~ +55 約100 約4(スタンドオフ付)	3 ~ 8 0.7 ~ 1.5 0.3 ~ 0.8 0.07 ~ 0.15 -65 ~ +70 -10 ~ +55 ※约100 ※约 7	9 ~ 20 1 ~ 6 1 ~ 2 0.1 ~ 0.5 -65 ~ +70 -10 ~ +55	せん頭陰極電流 数字陰極 最 大 (mA) 小数点 * にk(·) (mA) か	
180 200 Rk 15 20 100 150	190 200 250 300 Rp20 24 47 68	190 200 250 300 Rk20 24 47 68 91 110 200 300	250 300 Rp 5.1 6.8	200 250 300	200 250 300 Rp4.3 7.5 11	190 200 230 Rk6.8 9.1 15 36 47 82 0.05 ~ 0.5	190 210 Rk 5.6 7.5 63 70 0.05 ~ 0.5	200 250 Rk 5 9.1 60 75 0.05 ~ 0.5	200 235	190 200 250 300 Rp5 7 18 27 0.05 ~ 0.5	190 200 250 Rp 2 2.7 7.4	重 量 (g) 的タ 代表 陽極供給直流電圧 Ebb(Vdc) 直列抵抗 Rp(KΩ) ク Rk(·)(KΩ) パルス巾 tp(mS)	

NUMERICAL INDICATOR TUBES

RODAN 岡谷電機産業株式会社

本社 東京都渋谷区渋谷 1 - 8 - 3 安田ビル TEL. 03(400) 8 5 1 1 (代表) 営業部 東京都世田谷区三軒茶屋 2 - 46 - 3 TEL. 03(424) 8 1 1 1 (代表) 大阪営業所 大阪市東区淡路町 1 - 14 八千代ビル TEL. 06(201) 0 1 4 1 名古屋出張所 名古屋市東区石神堂町 2 - 22 みねビル TEL. 052(936)2366

代理店 · 特約店